
PostGIS SQL Cheatsheet
GIS with SQL

Using PostGIS, it’s possible to do much of what you would usually do in a GIS in the database using SQL.
This can be helpful because SQL is repeatable—it’s text that you can copy and re-run later as needed. In an
interactive context, you might take user input such as a map point or something more complex like a
polygon a user draws and use these geometries in an SQL query.

When you use PostGIS, you access GIS functionality usually through special functions that begin with ST_.
You can find the PostGIS documentation, which includes each of these special functions, online at
postgis.net/docs/.

Carto uses PostGIS, so any PostGIS functions will be available through Carto. PostGIS is open source and
can be installed on your computer or on a server for use in a web application.

Common Queries

Select polygons’ areas

SELECT *, ST_area(the_geom::geography) AS area
FROM table

For example:
SELECT *, ST_area(the_geom::geography) AS area
FROM countries

This query selects all of the columns from the table (*) and appends a new column (area) that contains the
area of the features in square meters. Adding ::geography to a geometry column asks PostGIS to
consider the geometry in terms of the globe rather than projected coordinates. This ensures that our units
are meters.

Select polygons’ areas with a specific projection

SELECT *, ST_area(ST_transform(the_geom, 2263)) AS area
FROM table

For example:
SELECT *, ST_area(ST_transform(the_geom, 2263)) AS area
FROM nyc_census_tracts

This query is very similar to the previous query, but we are using ST_transform to reproject the geometry
into EPSG:2263, first, which ensures that the units will be the units of the projection, in this case square feet.

http://postgis.net/docs/
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Area.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Area.html
http://postgis.net/docs/manual-3.0/ST_Area.html
http://postgis.net/docs/manual-3.0/ST_Area.html
https://carto.com/

Select features within a distance of a specified point

SELECT *
FROM table
WHERE ST_DWithin(
 the_geom::geography,
 cdb_latlng(latitude, longitude)::geography,
 distance
)

For example:
SELECT *
FROM dams
WHERE ST_DWithin(
 the_geom::geography,
 cdb_latlng(40.735, -73.994)::geography,
 100000
)

This query creates a point using cdb_latlng() (this is specific to Carto), then uses ST_DWithin() to find
features within some distance of that point, in meters. In this example the database will return dam features
within 100km of (40.735, -73.994).

Select features in a bounding box

SELECT *
FROM table
WHERE ST_within(
 the_geom_webmercator,
 ST_transform(
 ST_MakeEnvelope(
 min_lng, min_lat, max_lng, max_lat,
 4326
),
 3857
)
)

For example:
SELECT *
FROM dams_copy
WHERE ST_within(

http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_MakeEnvelope.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_DWithin.html
https://carto.com/help/working-with-data/carto-functions/
https://carto.com/help/working-with-data/carto-functions/
http://postgis.net/docs/manual-3.0/ST_DWithin.html
https://carto.com/help/working-with-data/carto-functions/
http://postgis.net/docs/manual-3.0/ST_DWithin.html

 the_geom_webmercator,
 ST_transform(
 ST_MakeEnvelope(
 -75, 40, -70, 45,
 4326
),
 3857
)
)

This query selects features within a given bounding box, which would be specified in the italicized parts
(minimum longitude, minimum latitude, maximum longitude, maximum latitude). The new functions here are
ST_within, which checks if one geometry is within another, and ST_MakeEnvelope, which makes a
rectangle from the given minimums and maximums.

Select buffered geometries

SELECT cartodb_id,
 ST_transform(
 ST_buffer(the_geom_webmercator, buffer_radius),
 3857
) as the_geom_webmercator
FROM table

For example:
SELECT cartodb_id,
 ST_transform(
 ST_buffer(the_geom_webmercator, 20000),
 3857
) as the_geom_webmercator
FROM dams

This query buffers your feature’s geometries by the specified buffer radius (in the example, 20km) using
ST_buffer(). Note that after we buffer the geometry we reproject the result into EPSG:3857
(webmercator, the projection webmaps use) and give it the name the_geom_webmercator. If we didn’t do
this, there would be no column for Carto to map. Note also that once we start specifying columns we would
need to specify any other columns we want to have available in our popups or styles—here we only include
cartodb_id, but you would include others as necessary.

Order features by their distance to a point

SELECT *
FROM table
ORDER BY the_geom <-> cdb_latlng(latitude, longitude)

http://postgis.net/docs/manual-3.0/ST_Buffer.html
http://postgis.net/docs/manual-3.0/ST_Buffer.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_Buffer.html
http://postgis.net/docs/manual-3.0/ST_Transform.html
http://postgis.net/docs/manual-3.0/ST_MakeEnvelope.html
http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_MakeEnvelope.html
http://postgis.net/docs/manual-3.0/ST_Transform.html

LIMIT count

For example:
SELECT *
FROM dams
ORDER BY the_geom <-> cdb_latlng(40.735, -73.994)
LIMIT 10

This query creates a point using cdb_latlng() (this is specific to Carto), then uses <-> to order the
features by their distance from that point. In this example the database will return the 10 closest dam
features to (40.735, -73.994).

Spatial join: select features that overlap with features in another table

SELECT t1.*
FROM table1 t1
LEFT OUTER JOIN table2 t2 ON
 ST_within(t1.the_geom, t2.the_geom)
WHERE condition

For example:
SELECT d.*
FROM dams d
LEFT OUTER JOIN countries c ON
 ST_within(d.the_geom, c.the_geom)
WHERE c.name = 'Canada'

This query selects features from one table that overlap with some features from another table using a spatial
join. Some GISs refer to this as a “select by location.” It uses ST_within to check if a feature from table1
is in a feature from table2, and if there is a match you can use the matching attributes in the WHERE
clause. The example does this—it uses the name field from the countries table to pick which dams to
select.

Spatial join: count features in polygons

SELECT t1.*, count(t2.*) AS t2_count
FROM table1 t1
LEFT OUTER JOIN table2 t2 ON
 ST_within(t2.the_geom, t1.the_geom)
GROUP BY t1.cartodb_id

For example:
SELECT c.*, count(d.*) AS dams_count
FROM countries c

http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/geometry_distance_knn.html
https://carto.com/help/working-with-data/carto-functions/

LEFT OUTER JOIN dams d ON
 ST_within(d.the_geom, c.the_geom)
GROUP BY c.cartodb_id

This query selects all of the features from one table and counts overlapping features from another table
using a spatial join. This is equivalent to counting points (or small polygons and lines) in polygons in a GIS. It
uses ST_within to check if a feature from table2 is in a feature from table1, and if there is a match it
adds that feature to t2_count. The example does this and counts the number of dams within each feature
in countries, and you could then use the dams_count field when styling the layer.

http://postgis.net/docs/manual-3.0/ST_Within.html
http://postgis.net/docs/manual-3.0/ST_Within.html

	Common Queries
	Select polygons’ areas
	Select polygons’ areas with a specific projection
	Select features within a distance of a specified point
	Select features in a bounding box
	Select buffered geometries
	Order features by their distance to a point
	Spatial join: select features that overlap with features in another table
	Spatial join: count features in polygons

