
SQL Cheatsheet
Understanding data with SQL

Clauses
Clauses are distinct parts of an SQL statement. Put each on its own line and capitalize as below to increase 
legibility. Here are the five you will find most useful for understanding data:

SELECT List the columns you want to show. * selects all columns.

FROM table Specify the table you want. For example, FROM citibike

WHERE conditions Place conditions on the rows that will be shown. Combine conditions with AND and OR (for 
example, bikes >= 5 AND bikes < 10 would choose rows where bikes is greater than or 
equal to five and less than ten). Negate them with NOT (for example NOT bikes = 3) would 
choose rows where bikes is not three.

GROUP BY column Group the output by the column. See Count in groups below for an example.

ORDER BY column Order the output by the column. Add ASC to order ascending (lowest to highest value), DESC to 
order descending (highest to lowest value). For example, ORDER BY bikes DESC would order 
rows by bikes, highest to lowest.

Common Queries

View all
This is the default statement in applications such as CartoDB.

SELECT *
FROM table

For example:
SELECT *
FROM citibike

Filter
Only show the rows that match the given conditions. See 
Clauses, above, for more details on conditions.

SELECT *
FROM table
WHERE conditions

For example:
SELECT *
FROM citibike
WHERE bikes >= 5

Count
SELECT can do more than pick columns. It can also aggregate 
columns. Get the number of rows in a table:

SELECT COUNT(*)
FROM table

For example:
SELECT COUNT(*)
FROM citibike

Count and filter
Add a WHERE clause to the above to count only the rows you 
are interested in.

SELECT COUNT(*)
FROM table
WHERE conditions

For example:
SELECT COUNT(*)
FROM citibike
WHERE bikes >= 5



Count in groups
Group rows by their value in a column, then count the number 
of rows in each group. Handy for answering questions 
like “How many stations are there in each borough?” 

SELECT column, COUNT(*)
FROM table
GROUP BY column

For example:
SELECT borough, COUNT(*)
FROM citibike
GROUP BY borough

Count in groups and filter
Group filtered rows by their value in a column, then count the 
number of rows in each group. “How many stations
are there in each borough that meet my criteria?”

SELECT column, COUNT(*)
FROM table
WHERE conditions
GROUP BY column

For example:
SELECT borough, COUNT(*)
FROM citibike
WHERE bikes > 1
GROUP BY borough

Find unique values in a column
SELECT has more tricks up its sleeve. Here it is used to 
quickly give us all of the unique values in a column by 
using DISTINCT. This is handy for understanding a 
column in a database that is new to you. “What's in 
here?”

SELECT DISTINCT(column)
FROM table

For example:
SELECT DISTINCT(borough)
FROM citibike

Find the range of a column
More SELECT fun. Get the range of values in a column with MIN
and MAX. As above, this is useful for understanding a column in 
a database that is new to you.

SELECT MIN(column), 
MAX(column)
FROM table

For example:
SELECT MIN(bikes), MAX(bikes)
FROM citibike

Find unique values in a column, filter
As with most statements, you can add a WHERE clause after the 
FROM clause to restrict the rows that you are querying. Here you
can get the unique values in a column while only looking at 
certain rows.

SELECT DISTINCT(column)
FROM table
WHERE conditions

For example:
SELECT DISTINCT(borough)
FROM citibike
WHERE bikes > 10

Ordering rows
Add an ORDER BY clause after a FROM clause (or a WHERE 
clause, if you are filtering) to sort rows.

SELECT *
FROM table
WHERE conditions
ORDER BY column

For example:
SELECT DISTINCT(borough)
FROM citibike
WHERE bikes > 10
ORDER BY bikes



Condition operators
WHERE clause conditions can contain the following operators:

> Greater than. Eg, bikes > 10 selects rows with bikes over 10.

< Less than. Eg, bikes < 10 selects rows with bikes under 10.

= Equal. Eg, bikes = 10 selects rows with bikes equal to 10.

!= Not equal. Eg, bikes != 10 selects rows with bikes not equal to 10.

>= Greater or equal. bikes >= 10 selects rows with bikes greater or equal to 10.

<= Less than or equal. bikes <= 10 selects rows with bikes less than or equal to 10.

IN In. Eg, bikes in (8, 9, 10), selecting rows with bikes equal to 8, 9, or 10.

IS NULL Is null. Eg, bikes IS NULL, selecting rows where bikes is not set.

IS NOT NULL Is not null. Eg, bikes IS NOT NULL, selecting rows where bikes is set.

Working with strings
If you are working with a column that is a string, your conditions sometimes have to take that into account. 
For example, when using =, you have to put the string you are comparing the column to in quotes:

SELECT *

FROM citibike

WHERE borough = 'Brooklyn'

More likely you will be searching within a column, which you can do using the ILIKE operator:

SELECT *

FROM citibike

WHERE address ILIKE '%fulton%'

The above searches the address column for any values containing “fulton”. The % means “match 
anything,” so this translates to “fulton preceded by anything and followed by anything else.”


	Clauses
	Common Queries
	View all
	Filter
	Count
	Count and filter
	Count in groups
	Count in groups and filter
	Find unique values in a column
	Find the range of a column
	Find unique values in a column, filter
	Ordering rows

	Condition operators
	Working with strings

